Схемы перегоревших ламп



Данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем.

Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.


Принципиальная схема сетевого питания ламп дневного света с перегоревшими нитями накала дана на рис. 1, а в таблице приведены сведения об элементах схемы, параметры которых определяет мощность используемой лампы.

Элементы схемы сетевого питания ламп дневного света с перегоревшими нитями накала:

Мощность лампы, Вт С1 и С2, мкФ С3 и С4, пФ VD1…VD4 R1, Ом

30 4 ДБ 60
40 10 ДБ 60
80 20 Д 30
20 Д 30

Диоды VD1 и VD2 с конденсаторами С1 и С2 составляют двухполупериодный выпрямитель с удвоением на-пряжения, причём ёмкости конденсаторов С1 и С2 определяют значение напряжения, поступающего на электроды лампы HL1 (чем больше ёмкость, тем выше напряжение).

В момент включения питания импульс напряжения на вы-ходе этого выпрямителя достигает В.

Диоды VD3 и VD4 в сочетании с конденсаторами С3 и С4 дополнительно повышают напряжение зажигания на электродах лампы HL1 примерно до В. (Кроме того, конденсаторы С3 и С4 гасят радиопомехи, возникающие при ионизационном разряде внутри лампы). Столь высокое напряжение и обеспечивает надёжность зажигания лампы независимо от наличия нитей накала.

После зажигания лампы сопротивление её уменьшается, что приводит к уменьшению напряжения на электродах лампы и обеспечивает нормальную её работу при напряжении около В (рабочее напряжение определяется номиналом резистора R1).


Рис Принципиальная схема питания лампа дневного света с перегоревшими нитями накала.

Устройство сохраняет работоспособность даже при отсутствии диодов VD3 и VD4, а так же конденсаторов С3 и С4, но при этом снижается надёжность зажигания лампы.

В схеме используются следующие радиодетали.

Конденсаторы С1 и С2 - бумажные или металлобумажные типа МБГ, КБГ, КБЛП, МБГО или МБГП на напряжение В; конденсаторы С3 и С4 типа КСГ, КСО, СГМ или СГО (со слюдяным диэлектриком) на рабочее напряжение не меньше В. Резистор R1 проволочный, мощность которого соответствует мощности применяемой лампы. Подойдут резисторы типа ПЭ, ПЭВ, ПЭВР. Диоды Д и Д для ламп мощностью 80 и Вт устанавливают на радиаторах (для теплоотвода).

Как видите, данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем.

Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.


Полезные Самоделки

Лампы дневного света обладают рядом преимуществ по сравнению с лампами накаливания. К их числу относятся большой срок службы, экономичность. К сожалению им присущи также и недостатки.

Это ненадежность светильников, длительный процесс зажигания (особенно при пониженных температурах)

Приведенная схема избавляет ЛДС от ряда недостатков. Она быстро и надежно зажигает лампы мощностью 20 и 40 Вт (в том числе и лампы со сгоревшими нитями накала).

C1,C2 - mkF B
C3,C4 - mkF B
VDVD6 - Любые на ток 0,1 А для ЛДС и 0,2 А для ЛДС и обратное напряжение не менее  В (по крайней мере для VD5, VD6).
L1 - Дроссель, соответствующий типу лампы.

Если вы переделываете светильник промышленного производства - оставьте существующий. Если же вы собираете светильник с нуля, то дроссель можно заменить лампой накаливания Вт (в зависимости от мощности ЛДС).

Внимание! При зажигании лампы напряжение на выходе схемы достигает В. Будьте осторожны при наладке схемы!

Список радиоэлементов

ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
VD1-VD6Диод1Поиск в LCSCВ блокнот
С1, С2Конденсатор мкФ B1Поиск в LCSCВ блокнот
С3, С4Конденсатор мкФ B1Поиск в LCSCВ блокнот
L1Катушка индуктивности1Поиск в LCSCВ блокнот
ЛДС1Поиск в LCSCВ блокнот
Добавить все

Скачать список элементов (PDF)

Теги:

 

Подключение не рабочих ЛДС и эконом-ламп от сети.

 

ИСТОЧНИК:  множество интернет ресурсов.

 

  Не будем долго затягивать с вступлением поскольку все схемы просты и нуждаются в минимальном описании, поэтому сразу рассмотрим принципиальные схемы, а начнем с самого простого :

 На рис.1 пожалуй две самые простые схемы которые удалось накапать,и описывать то не чего лишь что в первой не всегда "зажигание" включается, а при минусовой температуре помещения вообще необходимо с паяльной лампой ходить, во второй добавлю что с конденсаторами в 4 мкФ она  быстрее загорается и ярче горит, если лампа 20Вт то и 2мкФ хватит.

 

 На рис.2 лампа накаливания включена последовательно с выпрямителем, собранным по схеме удвоения напряжения.

Использование лампы накаливания вместо балластных конденсатора или остеклованного резистора имеет большое преимущество. Конденсатор, используемый в таком случае, имеет большие емкость и габариты, сравнительно дорог, так как должен быть рассчитан на амплитудное значение напряжения сети. Резистор сильно нагревается, а в случае пробоя одного из конденсаторов С1 или С2 сгорает. Лампа накаливания в нормальном режиме горит вполнакала, а при пробое одного из конденсаторов загорается полным накалом, что сигнализирует о неисправности.

Нити накала люминесцентной лампы не подогреваются, что резко увеличивает срок ее службы, а также позволяет использовать лампы с перегоревшей нитью накала, которые при обычной схеме питания приходится выбрасывать. Для облегчения поджига лампы на один конец ее баллона наклеивают кольцевой ободок из фольги, соединенный проводником с выводами противоположного конца. Частота пульсации выпрямленного напряжения составляет Гц, что значительно ослабляет неприятное ощущение от мерцания светового по тока.Налаживания схема не требует.

Однако необходимо, чтобы лампа накаливания была включена в фазовый провод сети, а не в нулевой. Поэтому в тех случаях когда зажигание люминесцентной лампы происходит неуверенно, следует перевернуть вилку в сетевой розетке.

        Конструктивное исполнение светильника не вызывает затруднений. Диоды и конденсаторы выпрямителя имеют малые габариты и легко размещаются в том месте, где обычно находится дроссель. Патрон для лампы накаливания можно установить в отверстие, предназначенное для установки стартера.

Ободок поджига выполняется из фольги шириной 50 мм и приклеивается к баллону лампы клеем.

 

 

На рис. 3 показана очередная схема с умножителями, здесь лампа загорается моментально

Конденсаторы С1, С4 должны быть бумажными, с рабочим напряжением в 1,5 раза больше питающего напряжения.

Конденсаторы С2, С3 желательно, чтобы были слюдяными.

Резистор R1 обязательно проволочный.

Данные элементов схемы в зависимости от мощности люминесцентных ламп приведены в таблице.

 

 

Диоды Д2, Д3 и конденсаторы С1, C4 представляют двухполупериодный выпрямитель с удвоением напряжения. Величины емкостей C1, C4 определяют рабочее напряжение лампы Л1 (чем больше емкость, тем больше напряжение на электродах лампы Л1).

В момент включения напряжение в точках а и б достигает В, которое прикладывается к электродам лампы Л1. В момент зажигания лампы Л1 напряжение в точках а и б уменьшается и обеспечивает нормальную работу лампы Л1, рассчитанной на напряжение В.

Применение диодов Д1, Д4 и конденсаторов С2, С3 повышает напряжение до В, что обеспечивает надежное зажигание лампы Л1 в момент включения. Конденсаторы С2, С3 одновременно способствуют подавлению радиопомех.

Лампа Л1 может работать без Д1, Д4, С2, С3, но при этом надежность включения уменьшается.

 В схеме на рис.4 так же можно вместо дросселя применят лампу накаливания.

Эта схема может запускать лампы до 80 ВТ, для большей мощности необходимо заменить диоды на более мощные и поднять емкость С1,С2 до 1мкФ.

 Идем дальше

 

 Устройство на рис.5, рассчитанное на питание лампы мощностью до 40 Вт . Работает оно так. Сетевое напряжение подается через дроссель L1 на мостовой выпрямитель VD3. В один из полупериодов сетевого напряжения конденсатор С2 заряжается через стабилитрон VD1, а конденсатор СЗ - через стабилитрон VD2.

В течение следующего полупериода напряжение сети суммируется с напряжением на этих конденсаторах, в результате чего лампа ЕL1 зажигается. После этого указанные конденсаторы быстро разряжаются через стабилитроны и диоды моста и в дальнейшем не оказывают влияния на работу устройства, поскольку не в состоянии заряжаться - ведь амплитудное напряжение сети меньше суммарного напряжения стабилизации стабилитронов и падения напряжения на лампе.

 Резистор R1 снимает остаточное напряжение на электродах лампы после выключения устройства, что необходимо для безопасной замены лампы.

Конденсатор C1 компенсирует реактивную мощность.

 

  Следующее устройства, рассчитанного на питание люминесцентной лампы мощностью более 40 Вт, приведена на рис. 6. Здесь мостовой выпрямитель выполнен на диодах VD1-VD4.

А "пусковые" конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления. Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VDЗ), а в другой - СЗ (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.

 Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.

 

 Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис.

7. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов - этому способствуют диоды VD1,VD2.

 Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью или Вт.

В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.

 

 Несколько лучший вариант питания мощной люминесцентной лампы - использовать устройство с учетверением выпрямленного напряжения, схема которого приведена на рис.8. Некоторым усовершенствованием устройства, повышающим надежность его работы, можно считать добавление терморезистора, подключенного параллельно входу диодного моста (между точками 1, 2 узла У1).

Он обеспечит более плавное увеличение напряжения на деталях выпрямителя-умножителя, а также демпфирование колебательного процесса в системе, содержащей реактивные элементы (дроссель и конденсаторы), а значит, снижение помех, проникающих в сеть.

 В рассмотренных устройствах используются диодные мосты КЦА или КЦА, а также выпрямительные диоды КДГ-КДЖ или другие, рассчитанные на ток до 1 А и обратное напряжение В.

Каждый стабилитрон может быть заменен несколькими последовательно соединенными с меньшим напряжением стабилизации. Конденсатор, шунтирующий сеть, желательно применить неполярный типа МБГЧ, остальные конденсаторы - МБМ, К42У-2, К Конденсаторы рекомендуется зашунтировать резисторами сопротивлением 1 МОм мощностью 0,5 Вт. Дроссель должен соответствовать мощности используемой люминесцентной лампы (1УБИ20 - для лампы мощностью 20 Вт, 1УБИ40 - 40 Вт, 1УБИВТ).

 

 

 

Starting burnt fluorescent lamps in the luminaire 2 x 36W.

Схемы перегоревших ламп


Данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем.

Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.


Принципиальная схема сетевого питания ламп дневного света с перегоревшими нитями накала дана на рис. 1, а в таблице приведены сведения об элементах схемы, параметры которых определяет мощность используемой лампы.

Элементы схемы сетевого питания ламп дневного света с перегоревшими нитями накала:

Мощность лампы, Вт С1 и С2, мкФ С3 и С4, пФ VD1…VD4 R1, Ом

30 4 ДБ 60
40 10 ДБ 60
80 20 Д 30
20 Д 30

Диоды VD1 и VD2 с конденсаторами С1 и С2 составляют двухполупериодный выпрямитель с удвоением на-пряжения, причём ёмкости конденсаторов С1 и С2 определяют значение напряжения, поступающего на электроды лампы HL1 (чем больше ёмкость, тем выше напряжение).

В момент включения питания импульс напряжения на вы-ходе этого выпрямителя достигает В.

Диоды VD3 и VD4 в сочетании с конденсаторами С3 и С4 дополнительно повышают напряжение зажигания на электродах лампы HL1 примерно до В. (Кроме того, конденсаторы С3 и С4 гасят радиопомехи, возникающие при ионизационном разряде внутри лампы). Столь высокое напряжение и обеспечивает надёжность зажигания лампы независимо от наличия нитей накала.

После зажигания лампы сопротивление её уменьшается, что приводит к уменьшению напряжения на электродах лампы и обеспечивает нормальную её работу при напряжении около В (рабочее напряжение определяется номиналом резистора R1).


Рис Принципиальная схема питания лампа дневного света с перегоревшими нитями накала.

Устройство сохраняет работоспособность даже при отсутствии диодов VD3 и VD4, а так же конденсаторов С3 и С4, но при этом снижается надёжность зажигания лампы.

В схеме используются следующие радиодетали.

Конденсаторы С1 и С2 - бумажные или металлобумажные типа МБГ, КБГ, КБЛП, МБГО или МБГП на напряжение В; конденсаторы С3 и С4 типа КСГ, КСО, СГМ или СГО (со слюдяным диэлектриком) на рабочее напряжение не меньше В. Резистор R1 проволочный, мощность которого соответствует мощности применяемой лампы. Подойдут резисторы типа ПЭ, ПЭВ, ПЭВР. Диоды Д и Д для ламп мощностью 80 и Вт устанавливают на радиаторах (для теплоотвода).

Как видите, данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем.

Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.


Полезные Самоделки

Лампы дневного света обладают рядом преимуществ по сравнению с лампами накаливания. К их числу относятся большой срок службы, экономичность. К сожалению им присущи также и недостатки. Это ненадежность светильников, длительный процесс зажигания (особенно при пониженных температурах)

Приведенная схема избавляет ЛДС от ряда недостатков.

Она быстро и надежно зажигает лампы мощностью 20 и 40 Вт (в том числе и лампы со сгоревшими нитями накала).

C1,C2 - mkF B
C3,C4 - mkF B
VDVD6 - Любые на ток 0,1 А для ЛДС и 0,2 А для ЛДС и обратное напряжение не менее  В (по крайней мере для VD5, VD6).
L1 - Дроссель, соответствующий типу лампы.

Если вы переделываете светильник промышленного производства - оставьте существующий. Если же вы собираете светильник с нуля, то дроссель можно заменить лампой накаливания Вт (в зависимости от мощности ЛДС).

Внимание! При зажигании лампы напряжение на выходе схемы достигает В. Будьте осторожны при наладке схемы!

Список радиоэлементов

ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
VD1-VD6Диод1Поиск в LCSCВ блокнот
С1, С2Конденсатор мкФ B1Поиск в LCSCВ блокнот
С3, С4Конденсатор мкФ B1Поиск в LCSCВ блокнот
L1Катушка индуктивности1Поиск в LCSCВ блокнот
ЛДС1Поиск в LCSCВ блокнот
Добавить все

Скачать список элементов (PDF)

Теги:

 

Подключение не рабочих ЛДС и эконом-ламп от сети.

 

ИСТОЧНИК:  множество интернет ресурсов.

 

  Не будем долго затягивать с вступлением поскольку все схемы просты и нуждаются в минимальном описании, поэтому сразу рассмотрим принципиальные схемы, а начнем с самого простого :

 На рис.1 пожалуй две самые простые схемы которые удалось накапать,и описывать то не чего лишь что в первой не всегда "зажигание" включается, а при минусовой температуре помещения вообще необходимо с паяльной лампой ходить, во второй добавлю что с конденсаторами в 4 мкФ она  быстрее загорается и ярче горит, если лампа 20Вт то и 2мкФ хватит.

 

 На рис.2 лампа накаливания включена последовательно с выпрямителем, собранным по схеме удвоения напряжения.

Использование лампы накаливания вместо балластных конденсатора или остеклованного резистора имеет большое преимущество. Конденсатор, используемый в таком случае, имеет большие емкость и габариты, сравнительно дорог, так как должен быть рассчитан на амплитудное значение напряжения сети. Резистор сильно нагревается, а в случае пробоя одного из конденсаторов С1 или С2 сгорает. Лампа накаливания в нормальном режиме горит вполнакала, а при пробое одного из конденсаторов загорается полным накалом, что сигнализирует о неисправности.

Нити накала люминесцентной лампы не подогреваются, что резко увеличивает срок ее службы, а также позволяет использовать лампы с перегоревшей нитью накала, которые при обычной схеме питания приходится выбрасывать. Для облегчения поджига лампы на один конец ее баллона наклеивают кольцевой ободок из фольги, соединенный проводником с выводами противоположного конца. Частота пульсации выпрямленного напряжения составляет Гц, что значительно ослабляет неприятное ощущение от мерцания светового по тока.Налаживания схема не требует.

Однако необходимо, чтобы лампа накаливания была включена в фазовый провод сети, а не в нулевой. Поэтому в тех случаях когда зажигание люминесцентной лампы происходит неуверенно, следует перевернуть вилку в сетевой розетке.

        Конструктивное исполнение светильника не вызывает затруднений.

Диоды и конденсаторы выпрямителя имеют малые габариты и легко размещаются в том месте, где обычно находится дроссель. Патрон для лампы накаливания можно установить в отверстие, предназначенное для установки стартера. Ободок поджига выполняется из фольги шириной 50 мм и приклеивается к баллону лампы клеем.

 

 

На рис. 3 показана очередная схема с умножителями, здесь лампа загорается моментально

Конденсаторы С1, С4 должны быть бумажными, с рабочим напряжением в 1,5 раза больше питающего напряжения.

Конденсаторы С2, С3 желательно, чтобы были слюдяными.

Резистор R1 обязательно проволочный.

Данные элементов схемы в зависимости от мощности люминесцентных ламп приведены в таблице.

 

 

Диоды Д2, Д3 и конденсаторы С1, C4 представляют двухполупериодный выпрямитель с удвоением напряжения. Величины емкостей C1, C4 определяют рабочее напряжение лампы Л1 (чем больше емкость, тем больше напряжение на электродах лампы Л1).

В момент включения напряжение в точках а и б достигает В, которое прикладывается к электродам лампы Л1. В момент зажигания лампы Л1 напряжение в точках а и б уменьшается и обеспечивает нормальную работу лампы Л1, рассчитанной на напряжение В.

Применение диодов Д1, Д4 и конденсаторов С2, С3 повышает напряжение до В, что обеспечивает надежное зажигание лампы Л1 в момент включения. Конденсаторы С2, С3 одновременно способствуют подавлению радиопомех.

Лампа Л1 может работать без Д1, Д4, С2, С3, но при этом надежность включения уменьшается.

 В схеме на рис.4 так же можно вместо дросселя применят лампу накаливания.

Эта схема может запускать лампы до 80 ВТ, для большей мощности необходимо заменить диоды на более мощные и поднять емкость С1,С2 до 1мкФ.

 Идем дальше

 

 Устройство на рис.5, рассчитанное на питание лампы мощностью до 40 Вт .

Работает оно так. Сетевое напряжение подается через дроссель L1 на мостовой выпрямитель VD3. В один из полупериодов сетевого напряжения конденсатор С2 заряжается через стабилитрон VD1, а конденсатор СЗ - через стабилитрон VD2. В течение следующего полупериода напряжение сети суммируется с напряжением на этих конденсаторах, в результате чего лампа ЕL1 зажигается.

После этого указанные конденсаторы быстро разряжаются через стабилитроны и диоды моста и в дальнейшем не оказывают влияния на работу устройства, поскольку не в состоянии заряжаться - ведь амплитудное напряжение сети меньше суммарного напряжения стабилизации стабилитронов и падения напряжения на лампе.

 Резистор R1 снимает остаточное напряжение на электродах лампы после выключения устройства, что необходимо для безопасной замены лампы. Конденсатор C1 компенсирует реактивную мощность.

 

  Следующее устройства, рассчитанного на питание люминесцентной лампы мощностью более 40 Вт, приведена на рис.

6. Здесь мостовой выпрямитель выполнен на диодах VD1-VD4. А "пусковые" конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления. Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VDЗ), а в другой - СЗ (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.

 Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.

 

 Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис.

7. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов - этому способствуют диоды VD1,VD2.

 Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью или Вт.

В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.

 

 Несколько лучший вариант питания мощной люминесцентной лампы - использовать устройство с учетверением выпрямленного напряжения, схема которого приведена на рис.8.

Некоторым усовершенствованием устройства, повышающим надежность его работы, можно считать добавление терморезистора, подключенного параллельно входу диодного моста (между точками 1, 2 узла У1). Он обеспечит более плавное увеличение напряжения на деталях выпрямителя-умножителя, а также демпфирование колебательного процесса в системе, содержащей реактивные элементы (дроссель и конденсаторы), а значит, снижение помех, проникающих в сеть.

 В рассмотренных устройствах используются диодные мосты КЦА или КЦА, а также выпрямительные диоды КДГ-КДЖ или другие, рассчитанные на ток до 1 А и обратное напряжение В.

Каждый стабилитрон может быть заменен несколькими последовательно соединенными с меньшим напряжением стабилизации. Конденсатор, шунтирующий сеть, желательно применить неполярный типа МБГЧ, остальные конденсаторы - МБМ, К42У-2, К Конденсаторы рекомендуется зашунтировать резисторами сопротивлением 1 МОм мощностью 0,5 Вт. Дроссель должен соответствовать мощности используемой люминесцентной лампы (1УБИ20 - для лампы мощностью 20 Вт, 1УБИ40 - 40 Вт, 1УБИВТ).

 

 

 

Схемы перегоревших ламп


Данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем.

Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.


Принципиальная схема сетевого питания ламп дневного света с перегоревшими нитями накала дана на рис. 1, а в таблице приведены сведения об элементах схемы, параметры которых определяет мощность используемой лампы.

Элементы схемы сетевого питания ламп дневного света с перегоревшими нитями накала:

Мощность лампы, Вт С1 и С2, мкФ С3 и С4, пФ VD1…VD4 R1, Ом

30 4 ДБ 60
40 10 ДБ 60
80 20 Д 30
20 Д 30

Диоды VD1 и VD2 с конденсаторами С1 и С2 составляют двухполупериодный выпрямитель с удвоением на-пряжения, причём ёмкости конденсаторов С1 и С2 определяют значение напряжения, поступающего на электроды лампы HL1 (чем больше ёмкость, тем выше напряжение).

В момент включения питания импульс напряжения на вы-ходе этого выпрямителя достигает В.

Диоды VD3 и VD4 в сочетании с конденсаторами С3 и С4 дополнительно повышают напряжение зажигания на электродах лампы HL1 примерно до В. (Кроме того, конденсаторы С3 и С4 гасят радиопомехи, возникающие при ионизационном разряде внутри лампы). Столь высокое напряжение и обеспечивает надёжность зажигания лампы независимо от наличия нитей накала.

После зажигания лампы сопротивление её уменьшается, что приводит к уменьшению напряжения на электродах лампы и обеспечивает нормальную её работу при напряжении около В (рабочее напряжение определяется номиналом резистора R1).


Рис Принципиальная схема питания лампа дневного света с перегоревшими нитями накала.

Устройство сохраняет работоспособность даже при отсутствии диодов VD3 и VD4, а так же конденсаторов С3 и С4, но при этом снижается надёжность зажигания лампы.

В схеме используются следующие радиодетали.

Конденсаторы С1 и С2 - бумажные или металлобумажные типа МБГ, КБГ, КБЛП, МБГО или МБГП на напряжение В; конденсаторы С3 и С4 типа КСГ, КСО, СГМ или СГО (со слюдяным диэлектриком) на рабочее напряжение не меньше В. Резистор R1 проволочный, мощность которого соответствует мощности применяемой лампы. Подойдут резисторы типа ПЭ, ПЭВ, ПЭВР. Диоды Д и Д для ламп мощностью 80 и Вт устанавливают на радиаторах (для теплоотвода).

Как видите, данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем.

Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.


Полезные Самоделки

Лампы дневного света обладают рядом преимуществ по сравнению с лампами накаливания. К их числу относятся большой срок службы, экономичность. К сожалению им присущи также и недостатки. Это ненадежность светильников, длительный процесс зажигания (особенно при пониженных температурах)

Приведенная схема избавляет ЛДС от ряда недостатков.

Она быстро и надежно зажигает лампы мощностью 20 и 40 Вт (в том числе и лампы со сгоревшими нитями накала).

C1,C2 - mkF B
C3,C4 - mkF B
VDVD6 - Любые на ток 0,1 А для ЛДС и 0,2 А для ЛДС и обратное напряжение не менее  В (по крайней мере для VD5, VD6).
L1 - Дроссель, соответствующий типу лампы. Если вы переделываете светильник промышленного производства - оставьте существующий.

Если же вы собираете светильник с нуля, то дроссель можно заменить лампой накаливания Вт (в зависимости от мощности ЛДС).

Внимание! При зажигании лампы напряжение на выходе схемы достигает В. Будьте осторожны при наладке схемы!

Список радиоэлементов

ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
VD1-VD6Диод1Поиск в LCSCВ блокнот
С1, С2Конденсатор мкФ B1Поиск в LCSCВ блокнот
С3, С4Конденсатор мкФ B1Поиск в LCSCВ блокнот
L1Катушка индуктивности1Поиск в LCSCВ блокнот
ЛДС1Поиск в LCSCВ блокнот
Добавить все

Скачать список элементов (PDF)

Теги:

 

Подключение не рабочих ЛДС и эконом-ламп от сети.

 

ИСТОЧНИК:  множество интернет ресурсов.

 

  Не будем долго затягивать с вступлением поскольку все схемы просты и нуждаются в минимальном описании, поэтому сразу рассмотрим принципиальные схемы, а начнем с самого простого :

 На рис.1 пожалуй две самые простые схемы которые удалось накапать,и описывать то не чего лишь что в первой не всегда "зажигание" включается, а при минусовой температуре помещения вообще необходимо с паяльной лампой ходить, во второй добавлю что с конденсаторами в 4 мкФ она  быстрее загорается и ярче горит, если лампа 20Вт то и 2мкФ хватит.

 

 На рис.2 лампа накаливания включена последовательно с выпрямителем, собранным по схеме удвоения напряжения.

Использование лампы накаливания вместо балластных конденсатора или остеклованного резистора имеет большое преимущество. Конденсатор, используемый в таком случае, имеет большие емкость и габариты, сравнительно дорог, так как должен быть рассчитан на амплитудное значение напряжения сети. Резистор сильно нагревается, а в случае пробоя одного из конденсаторов С1 или С2 сгорает. Лампа накаливания в нормальном режиме горит вполнакала, а при пробое одного из конденсаторов загорается полным накалом, что сигнализирует о неисправности.

Нити накала люминесцентной лампы не подогреваются, что резко увеличивает срок ее службы, а также позволяет использовать лампы с перегоревшей нитью накала, которые при обычной схеме питания приходится выбрасывать. Для облегчения поджига лампы на один конец ее баллона наклеивают кольцевой ободок из фольги, соединенный проводником с выводами противоположного конца. Частота пульсации выпрямленного напряжения составляет Гц, что значительно ослабляет неприятное ощущение от мерцания светового по тока.Налаживания схема не требует.

Однако необходимо, чтобы лампа накаливания была включена в фазовый провод сети, а не в нулевой. Поэтому в тех случаях когда зажигание люминесцентной лампы происходит неуверенно, следует перевернуть вилку в сетевой розетке.

        Конструктивное исполнение светильника не вызывает затруднений.

Диоды и конденсаторы выпрямителя имеют малые габариты и легко размещаются в том месте, где обычно находится дроссель. Патрон для лампы накаливания можно установить в отверстие, предназначенное для установки стартера. Ободок поджига выполняется из фольги шириной 50 мм и приклеивается к баллону лампы клеем.

 

 

На рис.

3 показана очередная схема с умножителями, здесь лампа загорается моментально

Конденсаторы С1, С4 должны быть бумажными, с рабочим напряжением в 1,5 раза больше питающего напряжения. Конденсаторы С2, С3 желательно, чтобы были слюдяными.

Резистор R1 обязательно проволочный.

Данные элементов схемы в зависимости от мощности люминесцентных ламп приведены в таблице.

 

 

Диоды Д2, Д3 и конденсаторы С1, C4 представляют двухполупериодный выпрямитель с удвоением напряжения.

Величины емкостей C1, C4 определяют рабочее напряжение лампы Л1 (чем больше емкость, тем больше напряжение на электродах лампы Л1). В момент включения напряжение в точках а и б достигает В, которое прикладывается к электродам лампы Л1. В момент зажигания лампы Л1 напряжение в точках а и б уменьшается и обеспечивает нормальную работу лампы Л1, рассчитанной на напряжение В.

Применение диодов Д1, Д4 и конденсаторов С2, С3 повышает напряжение до В, что обеспечивает надежное зажигание лампы Л1 в момент включения.

Конденсаторы С2, С3 одновременно способствуют подавлению радиопомех.

Лампа Л1 может работать без Д1, Д4, С2, С3, но при этом надежность включения уменьшается.

 В схеме на рис.4 так же можно вместо дросселя применят лампу накаливания.

Эта схема может запускать лампы до 80 ВТ, для большей мощности необходимо заменить диоды на более мощные и поднять емкость С1,С2 до 1мкФ.

 Идем дальше

 

 Устройство на рис.5, рассчитанное на питание лампы мощностью до 40 Вт .

Работает оно так. Сетевое напряжение подается через дроссель L1 на мостовой выпрямитель VD3. В один из полупериодов сетевого напряжения конденсатор С2 заряжается через стабилитрон VD1, а конденсатор СЗ - через стабилитрон VD2. В течение следующего полупериода напряжение сети суммируется с напряжением на этих конденсаторах, в результате чего лампа ЕL1 зажигается. После этого указанные конденсаторы быстро разряжаются через стабилитроны и диоды моста и в дальнейшем не оказывают влияния на работу устройства, поскольку не в состоянии заряжаться - ведь амплитудное напряжение сети меньше суммарного напряжения стабилизации стабилитронов и падения напряжения на лампе.

 Резистор R1 снимает остаточное напряжение на электродах лампы после выключения устройства, что необходимо для безопасной замены лампы.

Конденсатор C1 компенсирует реактивную мощность.

 

  Следующее устройства, рассчитанного на питание люминесцентной лампы мощностью более 40 Вт, приведена на рис. 6. Здесь мостовой выпрямитель выполнен на диодах VD1-VD4. А "пусковые" конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления.

Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VDЗ), а в другой - СЗ (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.

 Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.

 

 Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис.

7. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов - этому способствуют диоды VD1,VD2.

 Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью или Вт.

В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.

 

 Несколько лучший вариант питания мощной люминесцентной лампы - использовать устройство с учетверением выпрямленного напряжения, схема которого приведена на рис.8. Некоторым усовершенствованием устройства, повышающим надежность его работы, можно считать добавление терморезистора, подключенного параллельно входу диодного моста (между точками 1, 2 узла У1).

Он обеспечит более плавное увеличение напряжения на деталях выпрямителя-умножителя, а также демпфирование колебательного процесса в системе, содержащей реактивные элементы (дроссель и конденсаторы), а значит, снижение помех, проникающих в сеть.

 В рассмотренных устройствах используются диодные мосты КЦА или КЦА, а также выпрямительные диоды КДГ-КДЖ или другие, рассчитанные на ток до 1 А и обратное напряжение В.

Каждый стабилитрон может быть заменен несколькими последовательно соединенными с меньшим напряжением стабилизации. Конденсатор, шунтирующий сеть, желательно применить неполярный типа МБГЧ, остальные конденсаторы - МБМ, К42У-2, К Конденсаторы рекомендуется зашунтировать резисторами сопротивлением 1 МОм мощностью 0,5 Вт. Дроссель должен соответствовать мощности используемой люминесцентной лампы (1УБИ20 - для лампы мощностью 20 Вт, 1УБИ40 - 40 Вт, 1УБИВТ).

 

 

 

 

Подключение не рабочих ЛДС и эконом-ламп от сети.

 

ИСТОЧНИК:  множество интернет ресурсов.

 

  Не будем долго затягивать с вступлением поскольку все схемы просты и нуждаются в минимальном описании, поэтому сразу рассмотрим принципиальные схемы, а начнем с самого простого :

 На рис.1 пожалуй две самые простые схемы которые удалось накапать,и описывать то не чего лишь что в первой не всегда "зажигание" включается, а при минусовой температуре помещения вообще необходимо с паяльной лампой ходить, во второй добавлю что с конденсаторами в 4 мкФ она  быстрее загорается и ярче горит, если лампа 20Вт то и 2мкФ хватит.

 

 На рис.2 лампа накаливания включена последовательно с выпрямителем, собранным по схеме удвоения напряжения.

Использование лампы накаливания вместо балластных конденсатора или остеклованного резистора имеет большое преимущество. Конденсатор, используемый в таком случае, имеет большие емкость и габариты, сравнительно дорог, так как должен быть рассчитан на амплитудное значение напряжения сети. Резистор сильно нагревается, а в случае пробоя одного из конденсаторов С1 или С2 сгорает. Лампа накаливания в нормальном режиме горит вполнакала, а при пробое одного из конденсаторов загорается полным накалом, что сигнализирует о неисправности.

Нити накала люминесцентной лампы не подогреваются, что резко увеличивает срок ее службы, а также позволяет использовать лампы с перегоревшей нитью накала, которые при обычной схеме питания приходится выбрасывать. Для облегчения поджига лампы на один конец ее баллона наклеивают кольцевой ободок из фольги, соединенный проводником с выводами противоположного конца.

Частота пульсации выпрямленного напряжения составляет Гц, что значительно ослабляет неприятное ощущение от мерцания светового по тока.Налаживания схема не требует. Однако необходимо, чтобы лампа накаливания была включена в фазовый провод сети, а не в нулевой. Поэтому в тех случаях когда зажигание люминесцентной лампы происходит неуверенно, следует перевернуть вилку в сетевой розетке.

        Конструктивное исполнение светильника не вызывает затруднений.

Диоды и конденсаторы выпрямителя имеют малые габариты и легко размещаются в том месте, где обычно находится дроссель. Патрон для лампы накаливания можно установить в отверстие, предназначенное для установки стартера. Ободок поджига выполняется из фольги шириной 50 мм и приклеивается к баллону лампы клеем.

 

 

На рис. 3 показана очередная схема с умножителями, здесь лампа загорается моментально

Конденсаторы С1, С4 должны быть бумажными, с рабочим напряжением в 1,5 раза больше питающего напряжения.

Конденсаторы С2, С3 желательно, чтобы были слюдяными.

Резистор R1 обязательно проволочный.

Данные элементов схемы в зависимости от мощности люминесцентных ламп приведены в таблице.

 

 

Диоды Д2, Д3 и конденсаторы С1, C4 представляют двухполупериодный выпрямитель с удвоением напряжения. Величины емкостей C1, C4 определяют рабочее напряжение лампы Л1 (чем больше емкость, тем больше напряжение на электродах лампы Л1).

В момент включения напряжение в точках а и б достигает В, которое прикладывается к электродам лампы Л1. В момент зажигания лампы Л1 напряжение в точках а и б уменьшается и обеспечивает нормальную работу лампы Л1, рассчитанной на напряжение В.

Применение диодов Д1, Д4 и конденсаторов С2, С3 повышает напряжение до В, что обеспечивает надежное зажигание лампы Л1 в момент включения. Конденсаторы С2, С3 одновременно способствуют подавлению радиопомех.

Лампа Л1 может работать без Д1, Д4, С2, С3, но при этом надежность включения уменьшается.

 В схеме на рис.4 так же можно вместо дросселя применят лампу накаливания.

Эта схема может запускать лампы до 80 ВТ, для большей мощности необходимо заменить диоды на более мощные и поднять емкость С1,С2 до 1мкФ.

 Идем дальше

 

 Устройство на рис.5, рассчитанное на питание лампы мощностью до 40 Вт . Работает оно так. Сетевое напряжение подается через дроссель L1 на мостовой выпрямитель VD3. В один из полупериодов сетевого напряжения конденсатор С2 заряжается через стабилитрон VD1, а конденсатор СЗ - через стабилитрон VD2.

В течение следующего полупериода напряжение сети суммируется с напряжением на этих конденсаторах, в результате чего лампа ЕL1 зажигается. После этого указанные конденсаторы быстро разряжаются через стабилитроны и диоды моста и в дальнейшем не оказывают влияния на работу устройства, поскольку не в состоянии заряжаться - ведь амплитудное напряжение сети меньше суммарного напряжения стабилизации стабилитронов и падения напряжения на лампе.

 Резистор R1 снимает остаточное напряжение на электродах лампы после выключения устройства, что необходимо для безопасной замены лампы.

Конденсатор C1 компенсирует реактивную мощность.

 

  Следующее устройства, рассчитанного на питание люминесцентной лампы мощностью более 40 Вт, приведена на рис.

6. Здесь мостовой выпрямитель выполнен на диодах VD1-VD4. А "пусковые" конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления. Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VDЗ), а в другой - СЗ (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.

 Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.

 

 Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис.

7. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов - этому способствуют диоды VD1,VD2.

 Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью или Вт.

В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.

 

 Несколько лучший вариант питания мощной люминесцентной лампы - использовать устройство с учетверением выпрямленного напряжения, схема которого приведена на рис.8. Некоторым усовершенствованием устройства, повышающим надежность его работы, можно считать добавление терморезистора, подключенного параллельно входу диодного моста (между точками 1, 2 узла У1).

Он обеспечит более плавное увеличение напряжения на деталях выпрямителя-умножителя, а также демпфирование колебательного процесса в системе, содержащей реактивные элементы (дроссель и конденсаторы), а значит, снижение помех, проникающих в сеть.

 В рассмотренных устройствах используются диодные мосты КЦА или КЦА, а также выпрямительные диоды КДГ-КДЖ или другие, рассчитанные на ток до 1 А и обратное напряжение В.

Каждый стабилитрон может быть заменен несколькими последовательно соединенными с меньшим напряжением стабилизации. Конденсатор, шунтирующий сеть, желательно применить неполярный типа МБГЧ, остальные конденсаторы - МБМ, К42У-2, К Конденсаторы рекомендуется зашунтировать резисторами сопротивлением 1 МОм мощностью 0,5 Вт. Дроссель должен соответствовать мощности используемой люминесцентной лампы (1УБИ20 - для лампы мощностью 20 Вт, 1УБИ40 - 40 Вт, 1УБИВТ).

 

 

 


Данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем.

Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.


Принципиальная схема сетевого питания ламп дневного света с перегоревшими нитями накала дана на рис.

1, а в таблице приведены сведения об элементах схемы, параметры которых определяет мощность используемой лампы.

Элементы схемы сетевого питания ламп дневного света с перегоревшими нитями накала:

Мощность лампы, Вт С1 и С2, мкФ С3 и С4, пФ VD1…VD4 R1, Ом

30 4 ДБ 60
40 10 ДБ 60
80 20 Д 30
20 Д 30

Диоды VD1 и VD2 с конденсаторами С1 и С2 составляют двухполупериодный выпрямитель с удвоением на-пряжения, причём ёмкости конденсаторов С1 и С2 определяют значение напряжения, поступающего на электроды лампы HL1 (чем больше ёмкость, тем выше напряжение).

В момент включения питания импульс напряжения на вы-ходе этого выпрямителя достигает В.

Диоды VD3 и VD4 в сочетании с конденсаторами С3 и С4 дополнительно повышают напряжение зажигания на электродах лампы HL1 примерно до В. (Кроме того, конденсаторы С3 и С4 гасят радиопомехи, возникающие при ионизационном разряде внутри лампы). Столь высокое напряжение и обеспечивает надёжность зажигания лампы независимо от наличия нитей накала.

После зажигания лампы сопротивление её уменьшается, что приводит к уменьшению напряжения на электродах лампы и обеспечивает нормальную её работу при напряжении около В (рабочее напряжение определяется номиналом резистора R1).


Рис Принципиальная схема питания лампа дневного света с перегоревшими нитями накала.

Устройство сохраняет работоспособность даже при отсутствии диодов VD3 и VD4, а так же конденсаторов С3 и С4, но при этом снижается надёжность зажигания лампы.

В схеме используются следующие радиодетали.

Конденсаторы С1 и С2 - бумажные или металлобумажные типа МБГ, КБГ, КБЛП, МБГО или МБГП на напряжение В; конденсаторы С3 и С4 типа КСГ, КСО, СГМ или СГО (со слюдяным диэлектриком) на рабочее напряжение не меньше В. Резистор R1 проволочный, мощность которого соответствует мощности применяемой лампы. Подойдут резисторы типа ПЭ, ПЭВ, ПЭВР. Диоды Д и Д для ламп мощностью 80 и Вт устанавливают на радиаторах (для теплоотвода).

Как видите, данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем.

Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.


Полезные Самоделки

Лампы дневного света обладают рядом преимуществ по сравнению с лампами накаливания.

К их числу относятся большой срок службы, экономичность. К сожалению им присущи также и недостатки. Это ненадежность светильников, длительный процесс зажигания (особенно при пониженных температурах)

Приведенная схема избавляет ЛДС от ряда недостатков. Она быстро и надежно зажигает лампы мощностью 20 и 40 Вт (в том числе и лампы со сгоревшими нитями накала).

C1,C2 - mkF B
C3,C4 - mkF B
VDVD6 - Любые на ток 0,1 А для ЛДС и 0,2 А для ЛДС и обратное напряжение не менее  В (по крайней мере для VD5, VD6).
L1 - Дроссель, соответствующий типу лампы.

Если вы переделываете светильник промышленного производства - оставьте существующий. Если же вы собираете светильник с нуля, то дроссель можно заменить лампой накаливания Вт (в зависимости от мощности ЛДС).

Внимание! При зажигании лампы напряжение на выходе схемы достигает В. Будьте осторожны при наладке схемы!

Список радиоэлементов

ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
VD1-VD6Диод1Поиск в LCSCВ блокнот
С1, С2Конденсатор мкФ B1Поиск в LCSCВ блокнот
С3, С4Конденсатор мкФ B1Поиск в LCSCВ блокнот
L1Катушка индуктивности1Поиск в LCSCВ блокнот
ЛДС1Поиск в LCSCВ блокнот
Добавить все

Скачать список элементов (PDF)

Теги:

Схемы перегоревших ламп

 

Подключение не рабочих ЛДС и эконом-ламп от сети.

 

ИСТОЧНИК:  множество интернет ресурсов.

 

  Не будем долго затягивать с вступлением поскольку все схемы просты и нуждаются в минимальном описании, поэтому сразу рассмотрим принципиальные схемы, а начнем с самого простого :

 На рис.1 пожалуй две самые простые схемы которые удалось накапать,и описывать то не чего лишь что в первой не всегда "зажигание" включается, а при минусовой температуре помещения вообще необходимо с паяльной лампой ходить, во второй добавлю что с конденсаторами в 4 мкФ она  быстрее загорается и ярче горит, если лампа 20Вт то и 2мкФ хватит.

 

 На рис.2 лампа накаливания включена последовательно с выпрямителем, собранным по схеме удвоения напряжения.

Использование лампы накаливания вместо балластных конденсатора или остеклованного резистора имеет большое преимущество. Конденсатор, используемый в таком случае, имеет большие емкость и габариты, сравнительно дорог, так как должен быть рассчитан на амплитудное значение напряжения сети. Резистор сильно нагревается, а в случае пробоя одного из конденсаторов С1 или С2 сгорает.

Лампа накаливания в нормальном режиме горит вполнакала, а при пробое одного из конденсаторов загорается полным накалом, что сигнализирует о неисправности. Нити накала люминесцентной лампы не подогреваются, что резко увеличивает срок ее службы, а также позволяет использовать лампы с перегоревшей нитью накала, которые при обычной схеме питания приходится выбрасывать. Для облегчения поджига лампы на один конец ее баллона наклеивают кольцевой ободок из фольги, соединенный проводником с выводами противоположного конца.

Частота пульсации выпрямленного напряжения составляет Гц, что значительно ослабляет неприятное ощущение от мерцания светового по тока.Налаживания схема не требует. Однако необходимо, чтобы лампа накаливания была включена в фазовый провод сети, а не в нулевой. Поэтому в тех случаях когда зажигание люминесцентной лампы происходит неуверенно, следует перевернуть вилку в сетевой розетке.

        Конструктивное исполнение светильника не вызывает затруднений. Диоды и конденсаторы выпрямителя имеют малые габариты и легко размещаются в том месте, где обычно находится дроссель.

Патрон для лампы накаливания можно установить в отверстие, предназначенное для установки стартера. Ободок поджига выполняется из фольги шириной 50 мм и приклеивается к баллону лампы клеем.

 

 

На рис.

3 показана очередная схема с умножителями, здесь лампа загорается моментально

Конденсаторы С1, С4 должны быть бумажными, с рабочим напряжением в 1,5 раза больше питающего напряжения. Конденсаторы С2, С3 желательно, чтобы были слюдяными.

Резистор R1 обязательно проволочный.

Данные элементов схемы в зависимости от мощности люминесцентных ламп приведены в таблице.

 

 

Диоды Д2, Д3 и конденсаторы С1, C4 представляют двухполупериодный выпрямитель с удвоением напряжения.

Величины емкостей C1, C4 определяют рабочее напряжение лампы Л1 (чем больше емкость, тем больше напряжение на электродах лампы Л1). В момент включения напряжение в точках а и б достигает В, которое прикладывается к электродам лампы Л1. В момент зажигания лампы Л1 напряжение в точках а и б уменьшается и обеспечивает нормальную работу лампы Л1, рассчитанной на напряжение В.

Применение диодов Д1, Д4 и конденсаторов С2, С3 повышает напряжение до В, что обеспечивает надежное зажигание лампы Л1 в момент включения.

Конденсаторы С2, С3 одновременно способствуют подавлению радиопомех.

Лампа Л1 может работать без Д1, Д4, С2, С3, но при этом надежность включения уменьшается.

 В схеме на рис.4 так же можно вместо дросселя применят лампу накаливания.

Эта схема может запускать лампы до 80 ВТ, для большей мощности необходимо заменить диоды на более мощные и поднять емкость С1,С2 до 1мкФ.

 Идем дальше

 

 Устройство на рис.5, рассчитанное на питание лампы мощностью до 40 Вт . Работает оно так. Сетевое напряжение подается через дроссель L1 на мостовой выпрямитель VD3.

В один из полупериодов сетевого напряжения конденсатор С2 заряжается через стабилитрон VD1, а конденсатор СЗ - через стабилитрон VD2. В течение следующего полупериода напряжение сети суммируется с напряжением на этих конденсаторах, в результате чего лампа ЕL1 зажигается. После этого указанные конденсаторы быстро разряжаются через стабилитроны и диоды моста и в дальнейшем не оказывают влияния на работу устройства, поскольку не в состоянии заряжаться - ведь амплитудное напряжение сети меньше суммарного напряжения стабилизации стабилитронов и падения напряжения на лампе.

 Резистор R1 снимает остаточное напряжение на электродах лампы после выключения устройства, что необходимо для безопасной замены лампы.

Конденсатор C1 компенсирует реактивную мощность.

 

  Следующее устройства, рассчитанного на питание люминесцентной лампы мощностью более 40 Вт, приведена на рис. 6. Здесь мостовой выпрямитель выполнен на диодах VD1-VD4. А "пусковые" конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления.

Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VDЗ), а в другой - СЗ (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.

 Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.

 

 Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис.

7. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов - этому способствуют диоды VD1,VD2.

 Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью или Вт.

В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.

 

 Несколько лучший вариант питания мощной люминесцентной лампы - использовать устройство с учетверением выпрямленного напряжения, схема которого приведена на рис.8. Некоторым усовершенствованием устройства, повышающим надежность его работы, можно считать добавление терморезистора, подключенного параллельно входу диодного моста (между точками 1, 2 узла У1).

Он обеспечит более плавное увеличение напряжения на деталях выпрямителя-умножителя, а также демпфирование колебательного процесса в системе, содержащей реактивные элементы (дроссель и конденсаторы), а значит, снижение помех, проникающих в сеть.

 В рассмотренных устройствах используются диодные мосты КЦА или КЦА, а также выпрямительные диоды КДГ-КДЖ или другие, рассчитанные на ток до 1 А и обратное напряжение В.

Каждый стабилитрон может быть заменен несколькими последовательно соединенными с меньшим напряжением стабилизации. Конденсатор, шунтирующий сеть, желательно применить неполярный типа МБГЧ, остальные конденсаторы - МБМ, К42У-2, К Конденсаторы рекомендуется зашунтировать резисторами сопротивлением 1 МОм мощностью 0,5 Вт. Дроссель должен соответствовать мощности используемой люминесцентной лампы (1УБИ20 - для лампы мощностью 20 Вт, 1УБИ40 - 40 Вт, 1УБИВТ).

 

 

 


Данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем.

Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.


Принципиальная схема сетевого питания ламп дневного света с перегоревшими нитями накала дана на рис. 1, а в таблице приведены сведения об элементах схемы, параметры которых определяет мощность используемой лампы.

Элементы схемы сетевого питания ламп дневного света с перегоревшими нитями накала:

Мощность лампы, Вт С1 и С2, мкФ С3 и С4, пФ VD1…VD4 R1, Ом

30 4 ДБ 60
40 10 ДБ 60
80 20 Д 30
20 Д 30

Диоды VD1 и VD2 с конденсаторами С1 и С2 составляют двухполупериодный выпрямитель с удвоением на-пряжения, причём ёмкости конденсаторов С1 и С2 определяют значение напряжения, поступающего на электроды лампы HL1 (чем больше ёмкость, тем выше напряжение).

В момент включения питания импульс напряжения на вы-ходе этого выпрямителя достигает В.

Диоды VD3 и VD4 в сочетании с конденсаторами С3 и С4 дополнительно повышают напряжение зажигания на электродах лампы HL1 примерно до В. (Кроме того, конденсаторы С3 и С4 гасят радиопомехи, возникающие при ионизационном разряде внутри лампы).

Столь высокое напряжение и обеспечивает надёжность зажигания лампы независимо от наличия нитей накала.

После зажигания лампы сопротивление её уменьшается, что приводит к уменьшению напряжения на электродах лампы и обеспечивает нормальную её работу при напряжении около В (рабочее напряжение определяется номиналом резистора R1).


Рис Принципиальная схема питания лампа дневного света с перегоревшими нитями накала.

Устройство сохраняет работоспособность даже при отсутствии диодов VD3 и VD4, а так же конденсаторов С3 и С4, но при этом снижается надёжность зажигания лампы.

В схеме используются следующие радиодетали.

Конденсаторы С1 и С2 - бумажные или металлобумажные типа МБГ, КБГ, КБЛП, МБГО или МБГП на напряжение В; конденсаторы С3 и С4 типа КСГ, КСО, СГМ или СГО (со слюдяным диэлектриком) на рабочее напряжение не меньше В. Резистор R1 проволочный, мощность которого соответствует мощности применяемой лампы. Подойдут резисторы типа ПЭ, ПЭВ, ПЭВР. Диоды Д и Д для ламп мощностью 80 и Вт устанавливают на радиаторах (для теплоотвода).

Как видите, данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем.

Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.


Полезные Самоделки

Лампы дневного света обладают рядом преимуществ по сравнению с лампами накаливания. К их числу относятся большой срок службы, экономичность. К сожалению им присущи также и недостатки.

Это ненадежность светильников, длительный процесс зажигания (особенно при пониженных температурах)

Приведенная схема избавляет ЛДС от ряда недостатков. Она быстро и надежно зажигает лампы мощностью 20 и 40 Вт (в том числе и лампы со сгоревшими нитями накала).

C1,C2 - mkF B
C3,C4 - mkF B
VDVD6 - Любые на ток 0,1 А для ЛДС и 0,2 А для ЛДС и обратное напряжение не менее  В (по крайней мере для VD5, VD6).
L1 - Дроссель, соответствующий типу лампы.

Если вы переделываете светильник промышленного производства - оставьте существующий. Если же вы собираете светильник с нуля, то дроссель можно заменить лампой накаливания Вт (в зависимости от мощности ЛДС).

Внимание! При зажигании лампы напряжение на выходе схемы достигает В. Будьте осторожны при наладке схемы!

Список радиоэлементов

ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
VD1-VD6Диод1Поиск в LCSCВ блокнот
С1, С2Конденсатор мкФ B1Поиск в LCSCВ блокнот
С3, С4Конденсатор мкФ B1Поиск в LCSCВ блокнот
L1Катушка индуктивности1Поиск в LCSCВ блокнот
ЛДС1Поиск в LCSCВ блокнот
Добавить все

Скачать список элементов (PDF)

Теги:

 

Подключение не рабочих ЛДС и эконом-ламп от сети.

 

ИСТОЧНИК:  множество интернет ресурсов.

 

  Не будем долго затягивать с вступлением поскольку все схемы просты и нуждаются в минимальном описании, поэтому сразу рассмотрим принципиальные схемы, а начнем с самого простого :

 На рис.1 пожалуй две самые простые схемы которые удалось накапать,и описывать то не чего лишь что в первой не всегда "зажигание" включается, а при минусовой температуре помещения вообще необходимо с паяльной лампой ходить, во второй добавлю что с конденсаторами в 4 мкФ она  быстрее загорается и ярче горит, если лампа 20Вт то и 2мкФ хватит.

 

 На рис.2 лампа накаливания включена последовательно с выпрямителем, собранным по схеме удвоения напряжения.

Использование лампы накаливания вместо балластных конденсатора или остеклованного резистора имеет большое преимущество. Конденсатор, используемый в таком случае, имеет большие емкость и габариты, сравнительно дорог, так как должен быть рассчитан на амплитудное значение напряжения сети. Резистор сильно нагревается, а в случае пробоя одного из конденсаторов С1 или С2 сгорает.

Лампа накаливания в нормальном режиме горит вполнакала, а при пробое одного из конденсаторов загорается полным накалом, что сигнализирует о неисправности. Нити накала люминесцентной лампы не подогреваются, что резко увеличивает срок ее службы, а также позволяет использовать лампы с перегоревшей нитью накала, которые при обычной схеме питания приходится выбрасывать.

Для облегчения поджига лампы на один конец ее баллона наклеивают кольцевой ободок из фольги, соединенный проводником с выводами противоположного конца. Частота пульсации выпрямленного напряжения составляет Гц, что значительно ослабляет неприятное ощущение от мерцания светового по тока.Налаживания схема не требует. Однако необходимо, чтобы лампа накаливания была включена в фазовый провод сети, а не в нулевой.

Поэтому в тех случаях когда зажигание люминесцентной лампы происходит неуверенно, следует перевернуть вилку в сетевой розетке.

        Конструктивное исполнение светильника не вызывает затруднений. Диоды и конденсаторы выпрямителя имеют малые габариты и легко размещаются в том месте, где обычно находится дроссель. Патрон для лампы накаливания можно установить в отверстие, предназначенное для установки стартера.

Ободок поджига выполняется из фольги шириной 50 мм и приклеивается к баллону лампы клеем.

 

 

На рис. 3 показана очередная схема с умножителями, здесь лампа загорается моментально

Конденсаторы С1, С4 должны быть бумажными, с рабочим напряжением в 1,5 раза больше питающего напряжения. Конденсаторы С2, С3 желательно, чтобы были слюдяными.

Резистор R1 обязательно проволочный.

Данные элементов схемы в зависимости от мощности люминесцентных ламп приведены в таблице.

 

 

Диоды Д2, Д3 и конденсаторы С1, C4 представляют двухполупериодный выпрямитель с удвоением напряжения.

Величины емкостей C1, C4 определяют рабочее напряжение лампы Л1 (чем больше емкость, тем больше напряжение на электродах лампы Л1). В момент включения напряжение в точках а и б достигает В, которое прикладывается к электродам лампы Л1. В момент зажигания лампы Л1 напряжение в точках а и б уменьшается и обеспечивает нормальную работу лампы Л1, рассчитанной на напряжение В.

Применение диодов Д1, Д4 и конденсаторов С2, С3 повышает напряжение до В, что обеспечивает надежное зажигание лампы Л1 в момент включения.

Конденсаторы С2, С3 одновременно способствуют подавлению радиопомех.

Лампа Л1 может работать без Д1, Д4, С2, С3, но при этом надежность включения уменьшается.

 В схеме на рис.4 так же можно вместо дросселя применят лампу накаливания.

Эта схема может запускать лампы до 80 ВТ, для большей мощности необходимо заменить диоды на более мощные и поднять емкость С1,С2 до 1мкФ.

 Идем дальше

 

 Устройство на рис.5, рассчитанное на питание лампы мощностью до 40 Вт . Работает оно так. Сетевое напряжение подается через дроссель L1 на мостовой выпрямитель VD3. В один из полупериодов сетевого напряжения конденсатор С2 заряжается через стабилитрон VD1, а конденсатор СЗ - через стабилитрон VD2.

В течение следующего полупериода напряжение сети суммируется с напряжением на этих конденсаторах, в результате чего лампа ЕL1 зажигается. После этого указанные конденсаторы быстро разряжаются через стабилитроны и диоды моста и в дальнейшем не оказывают влияния на работу устройства, поскольку не в состоянии заряжаться - ведь амплитудное напряжение сети меньше суммарного напряжения стабилизации стабилитронов и падения напряжения на лампе.

 Резистор R1 снимает остаточное напряжение на электродах лампы после выключения устройства, что необходимо для безопасной замены лампы.

Конденсатор C1 компенсирует реактивную мощность.

 

  Следующее устройства, рассчитанного на питание люминесцентной лампы мощностью более 40 Вт, приведена на рис. 6. Здесь мостовой выпрямитель выполнен на диодах VD1-VD4. А "пусковые" конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления.

Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VDЗ), а в другой - СЗ (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.

 Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.

 

 Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис.

7. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов - этому способствуют диоды VD1,VD2.

 Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью или Вт.

В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.

 

 Несколько лучший вариант питания мощной люминесцентной лампы - использовать устройство с учетверением выпрямленного напряжения, схема которого приведена на рис.8. Некоторым усовершенствованием устройства, повышающим надежность его работы, можно считать добавление терморезистора, подключенного параллельно входу диодного моста (между точками 1, 2 узла У1).

Он обеспечит более плавное увеличение напряжения на деталях выпрямителя-умножителя, а также демпфирование колебательного процесса в системе, содержащей реактивные элементы (дроссель и конденсаторы), а значит, снижение помех, проникающих в сеть.

 В рассмотренных устройствах используются диодные мосты КЦА или КЦА, а также выпрямительные диоды КДГ-КДЖ или другие, рассчитанные на ток до 1 А и обратное напряжение В. Каждый стабилитрон может быть заменен несколькими последовательно соединенными с меньшим напряжением стабилизации.

Конденсатор, шунтирующий сеть, желательно применить неполярный типа МБГЧ, остальные конденсаторы - МБМ, К42У-2, К Конденсаторы рекомендуется зашунтировать резисторами сопротивлением 1 МОм мощностью 0,5 Вт. Дроссель должен соответствовать мощности используемой люминесцентной лампы (1УБИ20 - для лампы мощностью 20 Вт, 1УБИ40 - 40 Вт, 1УБИВТ).

 

 

 


Данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем.

Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.


Принципиальная схема сетевого питания ламп дневного света с перегоревшими нитями накала дана на рис.

1, а в таблице приведены сведения об элементах схемы, параметры которых определяет мощность используемой лампы.

Элементы схемы сетевого питания ламп дневного света с перегоревшими нитями накала:

Мощность лампы, Вт С1 и С2, мкФ С3 и С4, пФ VD1…VD4 R1, Ом

30 4 ДБ 60
40 10 ДБ 60
80 20 Д 30
20 Д 30

Диоды VD1 и VD2 с конденсаторами С1 и С2 составляют двухполупериодный выпрямитель с удвоением на-пряжения, причём ёмкости конденсаторов С1 и С2 определяют значение напряжения, поступающего на электроды лампы HL1 (чем больше ёмкость, тем выше напряжение).

В момент включения питания импульс напряжения на вы-ходе этого выпрямителя достигает В.

Диоды VD3 и VD4 в сочетании с конденсаторами С3 и С4 дополнительно повышают напряжение зажигания на электродах лампы HL1 примерно до В. (Кроме того, конденсаторы С3 и С4 гасят радиопомехи, возникающие при ионизационном разряде внутри лампы). Столь высокое напряжение и обеспечивает надёжность зажигания лампы независимо от наличия нитей накала.

После зажигания лампы сопротивление её уменьшается, что приводит к уменьшению напряжения на электродах лампы и обеспечивает нормальную её работу при напряжении около В (рабочее напряжение определяется номиналом резистора R1).


Рис Принципиальная схема питания лампа дневного света с перегоревшими нитями накала.

Устройство сохраняет работоспособность даже при отсутствии диодов VD3 и VD4, а так же конденсаторов С3 и С4, но при этом снижается надёжность зажигания лампы.

В схеме используются следующие радиодетали.

Конденсаторы С1 и С2 - бумажные или металлобумажные типа МБГ, КБГ, КБЛП, МБГО или МБГП на напряжение В; конденсаторы С3 и С4 типа КСГ, КСО, СГМ или СГО (со слюдяным диэлектриком) на рабочее напряжение не меньше В. Резистор R1 проволочный, мощность которого соответствует мощности применяемой лампы. Подойдут резисторы типа ПЭ, ПЭВ, ПЭВР. Диоды Д и Д для ламп мощностью 80 и Вт устанавливают на радиаторах (для теплоотвода).

Как видите, данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем.

Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.


Полезные Самоделки

Лампы дневного света обладают рядом преимуществ по сравнению с лампами накаливания.

К их числу относятся большой срок службы, экономичность. К сожалению им присущи также и недостатки. Это ненадежность светильников, длительный процесс зажигания (особенно при пониженных температурах)

Приведенная схема избавляет ЛДС от ряда недостатков. Она быстро и надежно зажигает лампы мощностью 20 и 40 Вт (в том числе и лампы со сгоревшими нитями накала).

C1,C2 - mkF B
C3,C4 - mkF B
VDVD6 - Любые на ток 0,1 А для ЛДС и 0,2 А для ЛДС и обратное напряжение не менее  В (по крайней мере для VD5, VD6).
L1 - Дроссель, соответствующий типу лампы.

Если вы переделываете светильник промышленного производства - оставьте существующий. Если же вы собираете светильник с нуля, то дроссель можно заменить лампой накаливания Вт (в зависимости от мощности ЛДС).

Внимание! При зажигании лампы напряжение на выходе схемы достигает В. Будьте осторожны при наладке схемы!

Список радиоэлементов

ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
VD1-VD6Диод1Поиск в LCSCВ блокнот
С1, С2Конденсатор мкФ B1Поиск в LCSCВ блокнот
С3, С4Конденсатор мкФ B1Поиск в LCSCВ блокнот
L1Катушка индуктивности1Поиск в LCSCВ блокнот
ЛДС1Поиск в LCSCВ блокнот
Добавить все

Скачать список элементов (PDF)

Теги:

Схемы перегоревших ламп

Схемы перегоревших ламп


Данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем.

Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.


Принципиальная схема сетевого питания ламп дневного света с перегоревшими нитями накала дана на рис.

1, а в таблице приведены сведения об элементах схемы, параметры которых определяет мощность используемой лампы.

Элементы схемы сетевого питания ламп дневного света с перегоревшими нитями накала:

Мощность лампы, Вт С1 и С2, мкФ С3 и С4, пФ VD1…VD4 R1, Ом

30 4 ДБ 60
40 10 ДБ 60
80 20 Д 30
20 Д 30

Диоды VD1 и VD2 с конденсаторами С1 и С2 составляют двухполупериодный выпрямитель с удвоением на-пряжения, причём ёмкости конденсаторов С1 и С2 определяют значение напряжения, поступающего на электроды лампы HL1 (чем больше ёмкость, тем выше напряжение).

В момент включения питания импульс напряжения на вы-ходе этого выпрямителя достигает В.

Диоды VD3 и VD4 в сочетании с конденсаторами С3 и С4 дополнительно повышают напряжение зажигания на электродах лампы HL1 примерно до В. (Кроме того, конденсаторы С3 и С4 гасят радиопомехи, возникающие при ионизационном разряде внутри лампы). Столь высокое напряжение и обеспечивает надёжность зажигания лампы независимо от наличия нитей накала.

После зажигания лампы сопротивление её уменьшается, что приводит к уменьшению напряжения на электродах лампы и обеспечивает нормальную её работу при напряжении около В (рабочее напряжение определяется номиналом резистора R1).


Рис Принципиальная схема питания лампа дневного света с перегоревшими нитями накала.

Устройство сохраняет работоспособность даже при отсутствии диодов VD3 и VD4, а так же конденсаторов С3 и С4, но при этом снижается надёжность зажигания лампы.

В схеме используются следующие радиодетали.

Конденсаторы С1 и С2 - бумажные или металлобумажные типа МБГ, КБГ, КБЛП, МБГО или МБГП на напряжение В; конденсаторы С3 и С4 типа КСГ, КСО, СГМ или СГО (со слюдяным диэлектриком) на рабочее напряжение не меньше В. Резистор R1 проволочный, мощность которого соответствует мощности применяемой лампы. Подойдут резисторы типа ПЭ, ПЭВ, ПЭВР. Диоды Д и Д для ламп мощностью 80 и Вт устанавливают на радиаторах (для теплоотвода).

Как видите, данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем.

Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.


Полезные Самоделки

Лампы дневного света обладают рядом преимуществ по сравнению с лампами накаливания. К их числу относятся большой срок службы, экономичность. К сожалению им присущи также и недостатки.

Это ненадежность светильников, длительный процесс зажигания (особенно при пониженных температурах)

Приведенная схема избавляет ЛДС от ряда недостатков. Она быстро и надежно зажигает лампы мощностью 20 и 40 Вт (в том числе и лампы со сгоревшими нитями накала).

C1,C2 - mkF B
C3,C4 - mkF B
VDVD6 - Любые на ток 0,1 А для ЛДС и 0,2 А для ЛДС и обратное напряжение не менее  В (по крайней мере для VD5, VD6).
L1 - Дроссель, соответствующий типу лампы.

Если вы переделываете светильник промышленного производства - оставьте существующий. Если же вы собираете светильник с нуля, то дроссель можно заменить лампой накаливания Вт (в зависимости от мощности ЛДС).

Внимание! При зажигании лампы напряжение на выходе схемы достигает В. Будьте осторожны при наладке схемы!

Список радиоэлементов

ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
VD1-VD6Диод1Поиск в LCSCВ блокнот
С1, С2Конденсатор мкФ B1Поиск в LCSCВ блокнот
С3, С4Конденсатор мкФ B1Поиск в LCSCВ блокнот
L1Катушка индуктивности1Поиск в LCSCВ блокнот
ЛДС1Поиск в LCSCВ блокнот
Добавить все

Скачать список элементов (PDF)

Теги:

 

Подключение не рабочих ЛДС и эконом-ламп от сети.

 

ИСТОЧНИК:  множество интернет ресурсов.

 

  Не будем долго затягивать с вступлением поскольку все схемы просты и нуждаются в минимальном описании, поэтому сразу рассмотрим принципиальные схемы, а начнем с самого простого :

 На рис.1 пожалуй две самые простые схемы которые удалось накапать,и описывать то не чего лишь что в первой не всегда "зажигание" включается, а при минусовой температуре помещения вообще необходимо с паяльной лампой ходить, во второй добавлю что с конденсаторами в 4 мкФ она  быстрее загорается и ярче горит, если лампа 20Вт то и 2мкФ хватит.

 

 На рис.2 лампа накаливания включена последовательно с выпрямителем, собранным по схеме удвоения напряжения.

Использование лампы накаливания вместо балластных конденсатора или остеклованного резистора имеет большое преимущество. Конденсатор, используемый в таком случае, имеет большие емкость и габариты, сравнительно дорог, так как должен быть рассчитан на амплитудное значение напряжения сети. Резистор сильно нагревается, а в случае пробоя одного из конденсаторов С1 или С2 сгорает.

Лампа накаливания в нормальном режиме горит вполнакала, а при пробое одного из конденсаторов загорается полным накалом, что сигнализирует о неисправности. Нити накала люминесцентной лампы не подогреваются, что резко увеличивает срок ее службы, а также позволяет использовать лампы с перегоревшей нитью накала, которые при обычной схеме питания приходится выбрасывать. Для облегчения поджига лампы на один конец ее баллона наклеивают кольцевой ободок из фольги, соединенный проводником с выводами противоположного конца.

Частота пульсации выпрямленного напряжения составляет Гц, что значительно ослабляет неприятное ощущение от мерцания светового по тока.Налаживания схема не требует. Однако необходимо, чтобы лампа накаливания была включена в фазовый провод сети, а не в нулевой. Поэтому в тех случаях когда зажигание люминесцентной лампы происходит неуверенно, следует перевернуть вилку в сетевой розетке.

        Конструктивное исполнение светильника не вызывает затруднений.

Диоды и конденсаторы выпрямителя имеют малые габариты и легко размещаются в том месте, где обычно находится дроссель. Патрон для лампы накаливания можно установить в отверстие, предназначенное для установки стартера. Ободок поджига выполняется из фольги шириной 50 мм и приклеивается к баллону лампы клеем.

 

 

На рис.

3 показана очередная схема с умножителями, здесь лампа загорается моментально

Конденсаторы С1, С4 должны быть бумажными, с рабочим напряжением в 1,5 раза больше питающего напряжения. Конденсаторы С2, С3 желательно, чтобы были слюдяными.

Резистор R1 обязательно проволочный.

Данные элементов схемы в зависимости от мощности люминесцентных ламп приведены в таблице.

 

 

Диоды Д2, Д3 и конденсаторы С1, C4 представляют двухполупериодный выпрямитель с удвоением напряжения.

Величины емкостей C1, C4 определяют рабочее напряжение лампы Л1 (чем больше емкость, тем больше напряжение на электродах лампы Л1). В момент включения напряжение в точках а и б достигает В, которое прикладывается к электродам лампы Л1. В момент зажигания лампы Л1 напряжение в точках а и б уменьшается и обеспечивает нормальную работу лампы Л1, рассчитанной на напряжение В.

Применение диодов Д1, Д4 и конденсаторов С2, С3 повышает напряжение до В, что обеспечивает надежное зажигание лампы Л1 в момент включения.

Конденсаторы С2, С3 одновременно способствуют подавлению радиопомех.

Лампа Л1 может работать без Д1, Д4, С2, С3, но при этом надежность включения уменьшается.

 В схеме на рис.4 так же можно вместо дросселя применят лампу накаливания. Эта схема может запускать лампы до 80 ВТ, для большей мощности необходимо заменить диоды на более мощные и поднять емкость С1,С2 до 1мкФ.

 Идем дальше

 

 Устройство на рис.5, рассчитанное на питание лампы мощностью до 40 Вт .

Работает оно так. Сетевое напряжение подается через дроссель L1 на мостовой выпрямитель VD3. В один из полупериодов сетевого напряжения конденсатор С2 заряжается через стабилитрон VD1, а конденсатор СЗ - через стабилитрон VD2. В течение следующего полупериода напряжение сети суммируется с напряжением на этих конденсаторах, в результате чего лампа ЕL1 зажигается.

После этого указанные конденсаторы быстро разряжаются через стабилитроны и диоды моста и в дальнейшем не оказывают влияния на работу устройства, поскольку не в состоянии заряжаться - ведь амплитудное напряжение сети меньше суммарного напряжения стабилизации стабилитронов и падения напряжения на лампе.

 Резистор R1 снимает остаточное напряжение на электродах лампы после выключения устройства, что необходимо для безопасной замены лампы.

Конденсатор C1 компенсирует реактивную мощность.

 

  Следующее устройства, рассчитанного на питание люминесцентной лампы мощностью более 40 Вт, приведена на рис. 6. Здесь мостовой выпрямитель выполнен на диодах VD1-VD4.

А "пусковые" конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления. Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VDЗ), а в другой - СЗ (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.

 Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.

 

 Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис.

7. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов - этому способствуют диоды VD1,VD2.

 Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью или Вт.

В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.

 

 Несколько лучший вариант питания мощной люминесцентной лампы - использовать устройство с учетверением выпрямленного напряжения, схема которого приведена на рис.8.

Некоторым усовершенствованием устройства, повышающим надежность его работы, можно считать добавление терморезистора, подключенного параллельно входу диодного моста (между точками 1, 2 узла У1). Он обеспечит более плавное увеличение напряжения на деталях выпрямителя-умножителя, а также демпфирование колебательного процесса в системе, содержащей реактивные элементы (дроссель и конденсаторы), а значит, снижение помех, проникающих в сеть.

 В рассмотренных устройствах используются диодные мосты КЦА или КЦА, а также выпрямительные диоды КДГ-КДЖ или другие, рассчитанные на ток до 1 А и обратное напряжение В.

Каждый стабилитрон может быть заменен несколькими последовательно соединенными с меньшим напряжением стабилизации. Конденсатор, шунтирующий сеть, желательно применить неполярный типа МБГЧ, остальные конденсаторы - МБМ, К42У-2, К Конденсаторы рекомендуется зашунтировать резисторами сопротивлением 1 МОм мощностью 0,5 Вт.

Дроссель должен соответствовать мощности используемой люминесцентной лампы (1УБИ20 - для лампы мощностью 20 Вт, 1УБИ40 - 40 Вт, 1УБИВТ).

 

 

 


Данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем. Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.


Принципиальная схема сетевого питания ламп дневного света с перегоревшими нитями накала дана на рис.

1, а в таблице приведены сведения об элементах схемы, параметры которых определяет мощность используемой лампы.

Элементы схемы сетевого питания ламп дневного света с перегоревшими нитями накала:

Мощность лампы, Вт С1 и С2, мкФ С3 и С4, пФ VD1…VD4 R1, Ом

30 4 ДБ 60
40 10 ДБ 60
80 20 Д 30
20 Д 30

Диоды VD1 и VD2 с конденсаторами С1 и С2 составляют двухполупериодный выпрямитель с удвоением на-пряжения, причём ёмкости конденсаторов С1 и С2 определяют значение напряжения, поступающего на электроды лампы HL1 (чем больше ёмкость, тем выше напряжение).

В момент включения питания импульс напряжения на вы-ходе этого выпрямителя достигает В.

Диоды VD3 и VD4 в сочетании с конденсаторами С3 и С4 дополнительно повышают напряжение зажигания на электродах лампы HL1 примерно до В. (Кроме того, конденсаторы С3 и С4 гасят радиопомехи, возникающие при ионизационном разряде внутри лампы). Столь высокое напряжение и обеспечивает надёжность зажигания лампы независимо от наличия нитей накала.

После зажигания лампы сопротивление её уменьшается, что приводит к уменьшению напряжения на электродах лампы и обеспечивает нормальную её работу при напряжении около В (рабочее напряжение определяется номиналом резистора R1).


Рис Принципиальная схема питания лампа дневного света с перегоревшими нитями накала.

Устройство сохраняет работоспособность даже при отсутствии диодов VD3 и VD4, а так же конденсаторов С3 и С4, но при этом снижается надёжность зажигания лампы.

В схеме используются следующие радиодетали.

Конденсаторы С1 и С2 - бумажные или металлобумажные типа МБГ, КБГ, КБЛП, МБГО или МБГП на напряжение В; конденсаторы С3 и С4 типа КСГ, КСО, СГМ или СГО (со слюдяным диэлектриком) на рабочее напряжение не меньше В. Резистор R1 проволочный, мощность которого соответствует мощности применяемой лампы. Подойдут резисторы типа ПЭ, ПЭВ, ПЭВР. Диоды Д и Д для ламп мощностью 80 и Вт устанавливают на радиаторах (для теплоотвода).

Как видите, данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем.

Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.


Полезные Самоделки

Лампы дневного света обладают рядом преимуществ по сравнению с лампами накаливания. К их числу относятся большой срок службы, экономичность.

К сожалению им присущи также и недостатки. Это ненадежность светильников, длительный процесс зажигания (особенно при пониженных температурах)

Приведенная схема избавляет ЛДС от ряда недостатков. Она быстро и надежно зажигает лампы мощностью 20 и 40 Вт (в том числе и лампы со сгоревшими нитями накала).

C1,C2 - mkF B
C3,C4 - mkF B
VDVD6 - Любые на ток 0,1 А для ЛДС и 0,2 А для ЛДС и обратное напряжение не менее  В (по крайней мере для VD5, VD6).
L1 - Дроссель, соответствующий типу лампы.

Если вы переделываете светильник промышленного производства - оставьте существующий. Если же вы собираете светильник с нуля, то дроссель можно заменить лампой накаливания Вт (в зависимости от мощности ЛДС).

Внимание! При зажигании лампы напряжение на выходе схемы достигает В. Будьте осторожны при наладке схемы!

Список радиоэлементов

ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
VD1-VD6Диод1Поиск в LCSCВ блокнот
С1, С2Конденсатор мкФ B1Поиск в LCSCВ блокнот
С3, С4Конденсатор мкФ B1Поиск в LCSCВ блокнот
L1Катушка индуктивности1Поиск в LCSCВ блокнот
ЛДС1Поиск в LCSCВ блокнот
Добавить все

Скачать список элементов (PDF)

Теги:

 

Подключение не рабочих ЛДС и эконом-ламп от сети.

 

ИСТОЧНИК:  множество интернет ресурсов.

 

  Не будем долго затягивать с вступлением поскольку все схемы просты и нуждаются в минимальном описании, поэтому сразу рассмотрим принципиальные схемы, а начнем с самого простого :

 На рис.1 пожалуй две самые простые схемы которые удалось накапать,и описывать то не чего лишь что в первой не всегда "зажигание" включается, а при минусовой температуре помещения вообще необходимо с паяльной лампой ходить, во второй добавлю что с конденсаторами в 4 мкФ она  быстрее загорается и ярче горит, если лампа 20Вт то и 2мкФ хватит.

 

 На рис.2 лампа накаливания включена последовательно с выпрямителем, собранным по схеме удвоения напряжения.

Использование лампы накаливания вместо балластных конденсатора или остеклованного резистора имеет большое преимущество. Конденсатор, используемый в таком случае, имеет большие емкость и габариты, сравнительно дорог, так как должен быть рассчитан на амплитудное значение напряжения сети. Резистор сильно нагревается, а в случае пробоя одного из конденсаторов С1 или С2 сгорает. Лампа накаливания в нормальном режиме горит вполнакала, а при пробое одного из конденсаторов загорается полным накалом, что сигнализирует о неисправности.

Нити накала люминесцентной лампы не подогреваются, что резко увеличивает срок ее службы, а также позволяет использовать лампы с перегоревшей нитью накала, которые при обычной схеме питания приходится выбрасывать. Для облегчения поджига лампы на один конец ее баллона наклеивают кольцевой ободок из фольги, соединенный проводником с выводами противоположного конца.

Частота пульсации выпрямленного напряжения составляет Гц, что значительно ослабляет неприятное ощущение от мерцания светового по тока.Налаживания схема не требует. Однако необходимо, чтобы лампа накаливания была включена в фазовый провод сети, а не в нулевой. Поэтому в тех случаях когда зажигание люминесцентной лампы происходит неуверенно, следует перевернуть вилку в сетевой розетке.

        Конструктивное исполнение светильника не вызывает затруднений.

Диоды и конденсаторы выпрямителя имеют малые габариты и легко размещаются в том месте, где обычно находится дроссель. Патрон для лампы накаливания можно установить в отверстие, предназначенное для установки стартера. Ободок поджига выполняется из фольги шириной 50 мм и приклеивается к баллону лампы клеем.

 

 

На рис.

3 показана очередная схема с умножителями, здесь лампа загорается моментально

Конденсаторы С1, С4 должны быть бумажными, с рабочим напряжением в 1,5 раза больше питающего напряжения. Конденсаторы С2, С3 желательно, чтобы были слюдяными.

Резистор R1 обязательно проволочный.

Данные элементов схемы в зависимости от мощности люминесцентных ламп приведены в таблице.

 

 

Диоды Д2, Д3 и конденсаторы С1, C4 представляют двухполупериодный выпрямитель с удвоением напряжения.

Величины емкостей C1, C4 определяют рабочее напряжение лампы Л1 (чем больше емкость, тем больше напряжение на электродах лампы Л1). В момент включения напряжение в точках а и б достигает В, которое прикладывается к электродам лампы Л1. В момент зажигания лампы Л1 напряжение в точках а и б уменьшается и обеспечивает нормальную работу лампы Л1, рассчитанной на напряжение В.

Применение диодов Д1, Д4 и конденсаторов С2, С3 повышает напряжение до В, что обеспечивает надежное зажигание лампы Л1 в момент включения.

Конденсаторы С2, С3 одновременно способствуют подавлению радиопомех.

Лампа Л1 может работать без Д1, Д4, С2, С3, но при этом надежность включения уменьшается.

 В схеме на рис.4 так же можно вместо дросселя применят лампу накаливания.

Эта схема может запускать лампы до 80 ВТ, для большей мощности необходимо заменить диоды на более мощные и поднять емкость С1,С2 до 1мкФ.

 Идем дальше

 

 Устройство на рис.5, рассчитанное на питание лампы мощностью до 40 Вт .

Работает оно так. Сетевое напряжение подается через дроссель L1 на мостовой выпрямитель VD3. В один из полупериодов сетевого напряжения конденсатор С2 заряжается через стабилитрон VD1, а конденсатор СЗ - через стабилитрон VD2. В течение следующего полупериода напряжение сети суммируется с напряжением на этих конденсаторах, в результате чего лампа ЕL1 зажигается. После этого указанные конденсаторы быстро разряжаются через стабилитроны и диоды моста и в дальнейшем не оказывают влияния на работу устройства, поскольку не в состоянии заряжаться - ведь амплитудное напряжение сети меньше суммарного напряжения стабилизации стабилитронов и падения напряжения на лампе.

 Резистор R1 снимает остаточное напряжение на электродах лампы после выключения устройства, что необходимо для безопасной замены лампы.

Конденсатор C1 компенсирует реактивную мощность.

 

  Следующее устройства, рассчитанного на питание люминесцентной лампы мощностью более 40 Вт, приведена на рис. 6. Здесь мостовой выпрямитель выполнен на диодах VD1-VD4.

А "пусковые" конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления. Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VDЗ), а в другой - СЗ (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов. Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.

 Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.

 

 Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис.

7. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов - этому способствуют диоды VD1,VD2.

 Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью или Вт.

В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.

 

 Несколько лучший вариант питания мощной люминесцентной лампы - использовать устройство с учетверением выпрямленного напряжения, схема которого приведена на рис.8.

Некоторым усовершенствованием устройства, повышающим надежность его работы, можно считать добавление терморезистора, подключенного параллельно входу диодного моста (между точками 1, 2 узла У1). Он обеспечит более плавное увеличение напряжения на деталях выпрямителя-умножителя, а также демпфирование колебательного процесса в системе, содержащей реактивные элементы (дроссель и конденсаторы), а значит, снижение помех, проникающих в сеть.

 В рассмотренных устройствах используются диодные мосты КЦА или КЦА, а также выпрямительные диоды КДГ-КДЖ или другие, рассчитанные на ток до 1 А и обратное напряжение В.

Каждый стабилитрон может быть заменен несколькими последовательно соединенными с меньшим напряжением стабилизации. Конденсатор, шунтирующий сеть, желательно применить неполярный типа МБГЧ, остальные конденсаторы - МБМ, К42У-2, К Конденсаторы рекомендуется зашунтировать резисторами сопротивлением 1 МОм мощностью 0,5 Вт. Дроссель должен соответствовать мощности используемой люминесцентной лампы (1УБИ20 - для лампы мощностью 20 Вт, 1УБИ40 - 40 Вт, 1УБИВТ).

 

 

 

Лампы дневного света обладают рядом преимуществ по сравнению с лампами накаливания. К их числу относятся большой срок службы, экономичность. К сожалению им присущи также и недостатки. Это ненадежность светильников, длительный процесс зажигания (особенно при пониженных температурах)

Приведенная схема избавляет ЛДС от ряда недостатков. Она быстро и надежно зажигает лампы мощностью 20 и 40 Вт (в том числе и лампы со сгоревшими нитями накала).

C1,C2 - mkF B
C3,C4 - mkF B
VDVD6 - Любые на ток 0,1 А для ЛДС и 0,2 А для ЛДС и обратное напряжение не менее  В (по крайней мере для VD5, VD6).
L1 - Дроссель, соответствующий типу лампы.

Если вы переделываете светильник промышленного производства - оставьте существующий. Если же вы собираете светильник с нуля, то дроссель можно заменить лампой накаливания Вт (в зависимости от мощности ЛДС).

Внимание! При зажигании лампы напряжение на выходе схемы достигает В.

Будьте осторожны при наладке схемы!

Список радиоэлементов

ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
VD1-VD6Диод1Поиск в LCSCВ блокнот
С1, С2Конденсатор мкФ B1Поиск в LCSCВ блокнот
С3, С4Конденсатор мкФ B1Поиск в LCSCВ блокнот
L1Катушка индуктивности1Поиск в LCSCВ блокнот
ЛДС1Поиск в LCSCВ блокнот
Добавить все

Скачать список элементов (PDF)

Теги:

 

Подключение не рабочих ЛДС и эконом-ламп от сети.

 

ИСТОЧНИК:  множество интернет ресурсов.

 

  Не будем долго затягивать с вступлением поскольку все схемы просты и нуждаются в минимальном описании, поэтому сразу рассмотрим принципиальные схемы, а начнем с самого простого :

 На рис.1 пожалуй две самые простые схемы которые удалось накапать,и описывать то не чего лишь что в первой не всегда "зажигание" включается, а при минусовой температуре помещения вообще необходимо с паяльной лампой ходить, во второй добавлю что с конденсаторами в 4 мкФ она  быстрее загорается и ярче горит, если лампа 20Вт то и 2мкФ хватит.

 

 На рис.2 лампа накаливания включена последовательно с выпрямителем, собранным по схеме удвоения напряжения.

Использование лампы накаливания вместо балластных конденсатора или остеклованного резистора имеет большое преимущество. Конденсатор, используемый в таком случае, имеет большие емкость и габариты, сравнительно дорог, так как должен быть рассчитан на амплитудное значение напряжения сети. Резистор сильно нагревается, а в случае пробоя одного из конденсаторов С1 или С2 сгорает. Лампа накаливания в нормальном режиме горит вполнакала, а при пробое одного из конденсаторов загорается полным накалом, что сигнализирует о неисправности.

Нити накала люминесцентной лампы не подогреваются, что резко увеличивает срок ее службы, а также позволяет использовать лампы с перегоревшей нитью накала, которые при обычной схеме питания приходится выбрасывать. Для облегчения поджига лампы на один конец ее баллона наклеивают кольцевой ободок из фольги, соединенный проводником с выводами противоположного конца. Частота пульсации выпрямленного напряжения составляет Гц, что значительно ослабляет неприятное ощущение от мерцания светового по тока.Налаживания схема не требует.

Однако необходимо, чтобы лампа накаливания была включена в фазовый провод сети, а не в нулевой. Поэтому в тех случаях когда зажигание люминесцентной лампы происходит неуверенно, следует перевернуть вилку в сетевой розетке.

        Конструктивное исполнение светильника не вызывает затруднений. Диоды и конденсаторы выпрямителя имеют малые габариты и легко размещаются в том месте, где обычно находится дроссель.

Патрон для лампы накаливания можно установить в отверстие, предназначенное для установки стартера. Ободок поджига выполняется из фольги шириной 50 мм и приклеивается к баллону лампы клеем.

 

 

На рис. 3 показана очередная схема с умножителями, здесь лампа загорается моментально

Конденсаторы С1, С4 должны быть бумажными, с рабочим напряжением в 1,5 раза больше питающего напряжения.

Конденсаторы С2, С3 желательно, чтобы были слюдяными.

Резистор R1 обязательно проволочный.

Данные элементов схемы в зависимости от мощности люминесцентных ламп приведены в таблице.

 

 

Диоды Д2, Д3 и конденсаторы С1, C4 представляют двухполупериодный выпрямитель с удвоением напряжения.

Величины емкостей C1, C4 определяют рабочее напряжение лампы Л1 (чем больше емкость, тем больше напряжение на электродах лампы Л1). В момент включения напряжение в точках а и б достигает В, которое прикладывается к электродам лампы Л1. В момент зажигания лампы Л1 напряжение в точках а и б уменьшается и обеспечивает нормальную работу лампы Л1, рассчитанной на напряжение В.

Применение диодов Д1, Д4 и конденсаторов С2, С3 повышает напряжение до В, что обеспечивает надежное зажигание лампы Л1 в момент включения.

Конденсаторы С2, С3 одновременно способствуют подавлению радиопомех.

Лампа Л1 может работать без Д1, Д4, С2, С3, но при этом надежность включения уменьшается.

 В схеме на рис.4 так же можно вместо дросселя применят лампу накаливания.

Эта схема может запускать лампы до 80 ВТ, для большей мощности необходимо заменить диоды на более мощные и поднять емкость С1,С2 до 1мкФ.

 Идем дальше

 

 Устройство на рис.5, рассчитанное на питание лампы мощностью до 40 Вт . Работает оно так. Сетевое напряжение подается через дроссель L1 на мостовой выпрямитель VD3. В один из полупериодов сетевого напряжения конденсатор С2 заряжается через стабилитрон VD1, а конденсатор СЗ - через стабилитрон VD2.

В течение следующего полупериода напряжение сети суммируется с напряжением на этих конденсаторах, в результате чего лампа ЕL1 зажигается. После этого указанные конденсаторы быстро разряжаются через стабилитроны и диоды моста и в дальнейшем не оказывают влияния на работу устройства, поскольку не в состоянии заряжаться - ведь амплитудное напряжение сети меньше суммарного напряжения стабилизации стабилитронов и падения напряжения на лампе.

 Резистор R1 снимает остаточное напряжение на электродах лампы после выключения устройства, что необходимо для безопасной замены лампы.

Конденсатор C1 компенсирует реактивную мощность.

 

  Следующее устройства, рассчитанного на питание люминесцентной лампы мощностью более 40 Вт, приведена на рис. 6. Здесь мостовой выпрямитель выполнен на диодах VD1-VD4.

А "пусковые" конденсаторы C2, C3 заряжаются через терморезисторы R1, R2 с положительным температурным коэффициентом сопротивления. Причем в один полупериод заряжается конденсатор С2 (через терморезистор R1 и диод VDЗ), а в другой - СЗ (через терморезистор R2 и диод VD4). Терморезисторы ограничивают ток зарядки конденсаторов.

Поскольку конденсаторы включены последовательно, напряжение на лампе EL1 достаточно для ее зажигания.

 Если терморезисторы будут в тепловом контакте с диодами моста, их сопротивление при нагревании диодов возрастет, что понизит ток зарядки.

 

 Дроссель, служащий балластным сопротивлением, не обязателен в рассматриваемых устройствах питания и может быть заменен лампой накаливания, как это показано на рис.

7. При включении устройства в сеть происходит разогрев лампы EL1 и терморезистора R1. Переменное напряжение на входе диодного моста VD3 возрастает. Конденсаторы С1 и С2 заряжаются через резисторы R2, R3. Когда суммарное напряжение на них достигнет напряжения зажигания лампы EL2, произойдет быстрая разрядка конденсаторов - этому способствуют диоды VD1,VD2.

 Для лампы EL2 мощностью 20 Вт EL1 должна быть мощностью 75 или Вт, если же EL2 применена мощностью 80 Вт, EL1 следует взять мощностью или Вт.

В последнем варианте допустимо изъять из устройства зарядно-разрядные цепи из резисторов R2, R3 и диодов VD1, VD2.

 

 Несколько лучший вариант питания мощной люминесцентной лампы - использовать устройство с учетверением выпрямленного напряжения, схема которого приведена на рис.8.

Некоторым усовершенствованием устройства, повышающим надежность его работы, можно считать добавление терморезистора, подключенного параллельно входу диодного моста (между точками 1, 2 узла У1). Он обеспечит более плавное увеличение напряжения на деталях выпрямителя-умножителя, а также демпфирование колебательного процесса в системе, содержащей реактивные элементы (дроссель и конденсаторы), а значит, снижение помех, проникающих в сеть.

 В рассмотренных устройствах используются диодные мосты КЦА или КЦА, а также выпрямительные диоды КДГ-КДЖ или другие, рассчитанные на ток до 1 А и обратное напряжение В.

Каждый стабилитрон может быть заменен несколькими последовательно соединенными с меньшим напряжением стабилизации. Конденсатор, шунтирующий сеть, желательно применить неполярный типа МБГЧ, остальные конденсаторы - МБМ, К42У-2, К Конденсаторы рекомендуется зашунтировать резисторами сопротивлением 1 МОм мощностью 0,5 Вт. Дроссель должен соответствовать мощности используемой люминесцентной лампы (1УБИ20 - для лампы мощностью 20 Вт, 1УБИ40 - 40 Вт, 1УБИВТ).

 

 

 


Данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем.

Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.


Принципиальная схема сетевого питания ламп дневного света с перегоревшими нитями накала дана на рис.

1, а в таблице приведены сведения об элементах схемы, параметры которых определяет мощность используемой лампы.

Элементы схемы сетевого питания ламп дневного света с перегоревшими нитями накала:

Мощность лампы, Вт С1 и С2, мкФ С3 и С4, пФ VD1…VD4 R1, Ом

30 4 ДБ 60
40 10 ДБ 60
80 20 Д 30
20 Д 30

Диоды VD1 и VD2 с конденсаторами С1 и С2 составляют двухполупериодный выпрямитель с удвоением на-пряжения, причём ёмкости конденсаторов С1 и С2 определяют значение напряжения, поступающего на электроды лампы HL1 (чем больше ёмкость, тем выше напряжение).

В момент включения питания импульс напряжения на вы-ходе этого выпрямителя достигает В.

Диоды VD3 и VD4 в сочетании с конденсаторами С3 и С4 дополнительно повышают напряжение зажигания на электродах лампы HL1 примерно до В. (Кроме того, конденсаторы С3 и С4 гасят радиопомехи, возникающие при ионизационном разряде внутри лампы). Столь высокое напряжение и обеспечивает надёжность зажигания лампы независимо от наличия нитей накала.

После зажигания лампы сопротивление её уменьшается, что приводит к уменьшению напряжения на электродах лампы и обеспечивает нормальную её работу при напряжении около В (рабочее напряжение определяется номиналом резистора R1).


Рис Принципиальная схема питания лампа дневного света с перегоревшими нитями накала.

Устройство сохраняет работоспособность даже при отсутствии диодов VD3 и VD4, а так же конденсаторов С3 и С4, но при этом снижается надёжность зажигания лампы.

В схеме используются следующие радиодетали.

Конденсаторы С1 и С2 - бумажные или металлобумажные типа МБГ, КБГ, КБЛП, МБГО или МБГП на напряжение В; конденсаторы С3 и С4 типа КСГ, КСО, СГМ или СГО (со слюдяным диэлектриком) на рабочее напряжение не меньше В. Резистор R1 проволочный, мощность которого соответствует мощности применяемой лампы. Подойдут резисторы типа ПЭ, ПЭВ, ПЭВР. Диоды Д и Д для ламп мощностью 80 и Вт устанавливают на радиаторах (для теплоотвода).

Как видите, данная схема включения люминесцентных ламп не имеет ни громоздкого дросселя, ни ненадёжного пускателя, обеспечивая бесшумную работу ламп, включение ламп без задержки и их работу без неприятного мигания, характерного для ламп питание которых осуществляется с помощью дроссельных схем с пускателем.

Применение подобной «бездроссельной» схемы позволяет не только существенно увеличить срок службы новых люминесцентных ламп, но и, как говорилось, использовать лампы с оборванной (перегоревшей) нитью накала.


Полезные Самоделки



Схема управления камаз
Схема подходов для ног
Лисий хвост стрижка схема
Схема оперного одессы
Схемы по установке omvl
Читать далее...

Обсуждают:


shelf34.ru

Copyright © 2017. Все права защищены.